实时搜索: 1 6 3 8等于多少

1 6 3 8等于多少

341条评论 2634人喜欢 5033次阅读 396人点赞
要全面的,包括像线段这种小的,什么自然数拉,公式等等,所有的全部都要啊,给全面了就多给加分啊 , 老师让我出些题,要有式子和答案方程也行小数分数百分数都行一般难度
分不是问题我还有两百分呢,注意是计算题如8加8除以5 , 六分之一除以三分之二乘以二等于多少四分之三除以八分之一乘以三分之一等于多 , 要快啊!!!
分采纳了才加 , 语文的话就是字,词,篇的练习.数学的话就是概念和易错等.英语的话就是句型,和单词.最好有必考的题目........求求你们一定要帮我啊555 ...

二十四分之二十三减六分之一减八分之三列式计算等于多少: 23/24-1/6-3/8
=23/24-4/24-9/24
=10/24
=5/12

望采纳

求小学数学苏教版一年级到六年级的全部概念定义,要全面的: 小学数学公式:
1、长方形的周长=(长+宽)×2 C=(a+b)×2
2、正方形的周长=边长×4 C=4a
3、长方形的面积=长×宽 S=ab
4、正方形的面积=边长×边长 S=a.a= a
5、三角形的面积=底×高÷2 S=ah÷2
6、平行四边形的面积=底×高 S=ah
7、梯形的面积=(上底+下底)×高÷2 S=(a+b)h÷2
8、直径=半径×2 d=2r 半径=直径÷2 r= d÷2
9、圆的周长=圆周率×直径=圆周率×半径×2 c=πd =2πr
10、圆的面积=圆周率×半径×半径 Ѕ=πr
11、长方体的表面积=(长×宽+长×高+宽×高)×2
12、长方体的体积 =长×宽×高 V =abh
13、正方体的表面积=棱长×棱长×6 S =6a
14、正方体的体积=棱长×棱长×棱长 V=a.a.a= a
15、圆柱的侧面积=底面圆的周长×高 S=ch
16、圆柱的表面积=上下底面面积+侧面积
S=2πr +2πrh=2π(d÷2) +2π(d÷2)h=2π(C÷2÷π) +Ch
17、圆柱的体积=底面积×高 V=Sh
V=πr h=π(d÷2) h=π(C÷2÷π) h
18、圆锥的体积=底面积×高÷3
V=Sh÷3=πr h÷3=π(d÷2) h÷3=π(C÷2÷π) h÷3
19、长方体(正方体、圆柱体)的体
1、 每份数×份数=总数 总数÷每份数=份数 总数÷份数=每份数
2、 1倍数×倍数=几倍数 几倍数÷1倍数=倍数 几倍数÷倍数=1倍数
3、 速度×时间=路程 路程÷速度=时间 路程÷时间=速度
4、 单价×数量=总价 总价÷单价=数量 总价÷数量=单价
5、 工作效率×工作时间=工作总量 工作总量÷工作效率=工作时间 工作总量÷工作时间=工作效率
6、 加数+加数=和 和-一个加数=另一个加数
7、 被减数-减数=差 被减数-差=减数 差+减数=被减数
8、 因数×因数=积 积÷一个因数=另一个因数
9、 被除数÷除数=商 被除数÷商=除数 商×除数=被除数
小学数学图形计算公式
1 、正方形 C周长 S面积 a边长 周长=边长×4 C=4a 面积=边长×边长 S=a×a
2 、正方体 V:体积 a:棱长 表面积=棱长×棱长×6 S表=a×a×6 体积=棱长×棱长×棱长 V=a×a×a
3 、长方形
C周长 S面积 a边长
周长=(长+宽)×2
C=2(a+b)
面积=长×宽
S=ab
4 、长方体
V:体积 s:面积 a:长 b: 宽 h:高
(1)表面积(长×宽+长×高+宽×高)×2
S=2(ab+ah+bh)
(2)体积=长×宽×高
V=abh
5 三角形
s面积 a底 h高
面积=底×高÷2
s=ah÷2
三角形高=面积 ×2÷底
三角形底=面积 ×2÷高
6 平行四边形
s面积 a底 h高
面积=底×高
s=ah
7 梯形
s面积 a上底 b下底 h高
面积=(上底+下底)×高÷2
s=(a+b)× h÷2
8 圆形
S面积 C周长 ∏ d=直径 r=半径
(1)周长=直径×∏=2×∏×半径
C=∏d=2∏r
(2)面积=半径×半径×∏
9 圆柱体
v:体积 h:高 s;底面积 r:底面半径 c:底面周长
(1)侧面积=底面周长×高
(2)表面积=侧面积+底面积×2
(3)体积=底面积×高
(4)体积=侧面积÷2×半径
10 圆锥体
v:体积 h:高 s;底面积 r:底面半径
体积=底面积×高÷3
总数÷总份数=平均数
和差问题
(和+差)÷2=大数
(和-差)÷2=小数
和倍问题
和÷(倍数-1)=小数
小数×倍数=大数
(或者 和-小数=大数)
差倍问题
差÷(倍数-1)=小数
小数×倍数=大数
(或 小数+差=大数)
植树问题
1 非封闭线路上的植树问题主要可分为以下三种情形:
⑴如果在非封闭线路的两端都要植树,那么:
株数=段数+1=全长÷株距-1
全长=株距×(株数-1)
株距=全长÷(株数-1)
⑵如果在非封闭线路的一端要植树,另一端不要植树,那么:
株数=段数=全长÷株距
全长=株距×株数
株距=全长÷株数
⑶如果在非封闭线路的两端都不要植树,那么:
株数=段数-1=全长÷株距-1
全长=株距×(株数+1)
株距=全长÷(株数+1)
2 封闭线路上的植树问题的数量关系如下
株数=段数=全长÷株距
全长=株距×株数
株距=全长÷株数
盈亏问题
(盈+亏)÷两次分配量之差=参加分配的份数
(大盈-小盈)÷两次分配量之差=参加分配的份数
(大亏-小亏)÷两次分配量之差=参加分配的份数
相遇问题
相遇路程=速度和×相遇时间
相遇时间=相遇路程÷速度和
速度和=相遇路程÷相遇时间
追及问题
追及距离=速度差×追及时间
追及时间=追及距离÷速度差
速度差=追及距离÷追及时间
流水问题
顺流速度=静水速度+水流速度
逆流速度=静水速度-水流速度
静水速度=(顺流速度+逆流速度)÷2
水流速度=(顺流速度-逆流速度)÷2
浓度问题
溶质的重量+溶剂的重量=溶液的重量
溶质的重量÷溶液的重量×100%=浓度
溶液的重量×浓度=溶质的重量
溶质的重量÷浓度=溶液的重量
利润与折扣问题
利润=售出价-成本
利润率=利润÷成本×100%=(售出价÷成本-1)×100%
涨跌金额=本金×涨跌百分比
折扣=实际售价÷原售价×100%(折扣<1)
利息=本金×利率×时间
税后利息=本金×利率×时间×(1-20%)
时间单位换算
1世纪=100年 1年=12月
大月(31天)有:1\3\5\7\8\10\12月
小月(30天)的有:4\6\9\11月
平年2月28天, 闰年2月29天
平年全年365天, 闰年全年366天
1日=24小时 1时=60分
1分=60秒 1时=3600秒1 整数的意义
自然数和0都是整数。
2 自然数
我们在数物体的时候,用来表示物体个数的1,2,3……叫做自然数。
一个物体也没有,用0表示。0也是自然数。
3计数单位
一(个)、十、百、千、万、十万、百万、千万、亿……都是计数单位。
每相邻两个计数单位之间的进率都是10。这样的计数法叫做十进制计数法。
4 数位
计数单位按照一定的顺序排列起来,它们所占的位置叫做数位。
5数的整除
整数a除以整数b(b ≠ 0),除得的商是整数而没有余数,我们就说a能被b整除,或者说b能整除a 。
如果数a能被数b(b ≠ 0)整除,a就叫做b的倍数,b就叫做a的约数(或a的因数)。倍数和约数是相互依存的。
因为35能被7整除,所以35是7的倍数,7是35的约数。
一个数的约数的个数是有限的,其中最小的约数是1,最大的 约数是它本身。例如:10的约数有1、2、5、10,其中最小的约数是1,最大的约数是10。
一个数的倍数的个数是无限的,其中最小的倍数是它本身。3的倍数有:3、6、9、12……其中最小的倍数是3 ,没有最大的倍数。
个位上是0、2、4、6、8的数,都能被2整除,例如:202、480、304,都能被2整除。。
个位上是0或5的数,都能被5整除,例如:5、30、405都能被5整除。。
一个数的各位上的数的和能被3整除,这个数就能被3整除,例如:12、108、204都能被3整除。
一个数各位数上的和能被9整除,这个数就能被9整除。
能被3整除的数不一定能被9整除,但是能被9整除的数一定能被3整除。
一个数的末两位数能被4(或25)整除,这个数就能被4(或25)整除。例如:16、404、1256都能被4整除,50、325、500、1675都能被25整除。
一个数的末三位数能被8(或125)整除,这个数就能被8(或125)整除。例如:1168、4600、5000、12344都能被8整除,1125、13375、5000都能被125整除。
能被2整除的数叫做偶数。
不能被2整除的数叫做奇数。
0也是偶数。自然数按能否被2 整除的特征可分为奇数和偶数。
一个数,如果只有1和它本身两个约数,这样的数叫做质数(或素数),100以内的质数有:2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53、59、61、67、71、73、79、83、89、97。
一个数,如果除了1和它本身还有别的约数,这样的数叫做合数,例如 4、6、8、9、12都是合数。
1不是质数也不是合数,自然数除了1外,不是质数就是合数。如果把自然数按其约数的个数的不同分类,可分为质数、合数和1。
每个合数都可以写成几个质数相乘的形式。其中每个质数都是这个合数的因数,叫做这个合数的质因数,例如15=3×5,3和5 叫做15的质因数。
把一个合数用质因数相乘的形式表示出来,叫做分解质因数。
例如把28分解质因数
几个数公有的约数,叫做这几个数的公约数。其中最大的一个,叫做这几个数的最大公约数,例如12的约数有1、2、3、4、6、12;18的约数有1、2、3、6、9、18。其中,1、2、3、6是12和1 8的公约数,6是它们的最大公约数。
公约数只有1的两个数,叫做互质数,成互质关系的两个数,有下列几种情况:
1和任何自然数互质。
相邻的两个自然数互质。
两个不同的质数互质。
当合数不是质数的倍数时,这个合数和这个质数互质。
两个合数的公约数只有1时,这两个合数互质,如果几个数中任意两个都互质,就说这几个数两两互质。
如果较小数是较大数的约数,那么较小数就是这两个数的最大公约数。
如果两个数是互质数,它们的最大公约数就是1。
几个数公有的倍数,叫做这几个数的公倍数,其中最小的一个,叫做这几个数的最小公倍数,如2的倍数有2、4、6 、8、10、12、14、16、18 ……
3的倍数有3、6、9、12、15、18 …… 其中6、12、18……是2、3的公倍数,6是它们的最小公倍数。。
如果较大数是较小数的倍数,那么较大数就是这两个数的最小公倍数。
如果两个数是互质数,那么这两个数的积就是它们的最小公倍数。
几个数的公约数的个数是有限的,而几个数的公倍数的个数是无限的。
(二)小数
1 小数的意义
把整数1平均分成10份、100份、1000份…… 得到的十分之几、百分之几、千分之几…… 可以用小数表示。
一位小数表示十分之几,两位小数表示百分之几,三位小数表示千分之几……
一个小数由整数部分、小数部分和小数点部分组成。数中的圆点叫做小数点,小数点左边的数叫做整数部分,小数点左边的数叫做整数部分,小数点右边的数叫做小数部分。
在小数里,每相邻两个计数单位之间的进率都是10。小数部分的最高分数单位“十分之一”和整数部分的最低单位“一”之间的进率也是10。
2小数的分类
纯小数:整数部分是零的小数,叫做纯小数。例如: 0.25 、 0.368 都是纯小数。
带小数:整数部分不是零的小数,叫做带小数。 例如: 3.25 、 5.26 都是带小数。
有限小数:小数部分的数位是有限的小数,叫做有限小数。 例如: 41.7 、 25.3 、 0.23 都是有限小数。
无限小数:小数部分的数位是无限的小数,叫做无限小数。 例如: 4.33 …… 3.1415926 ……
无限不循环小数:一个数的小数部分,数字排列无规律且位数无限,这样的小数叫做无限不循环小数。 例如:∏
循环小数:一个数的小数部分,有一个数字或者几个数字依次不断重复出现,这个数叫做循环小数。 例如: 3.555 …… 0.0333 …… 12.109109 ……
一个循环小数的小数部分,依次不断重复出现的数字叫做这个循环小数的循环节。 例如: 3.99 ……的循环节是“ 9 ” , 0.5454 ……的循环节是“ 54 ” 。
纯循环小数:循环节从小数部分第一位开始的,叫做纯循环小数。 例如: 3.111 …… 0.5656 ……
混循环小数:循环节不是从小数部分第一位开始的,叫做混循环小数。 3.1222 …… 0.03333 ……
写循环小数的时候,为了简便,小数的循环部分只需写出一个循环节,并在这个循环节的首、末位数字上各点一个圆点。如果循环 节只有 一个数字,就只在它的上面点一个点。例如: 3.777 …… 简写作 0.5302302 …… 简写作 。
(三)分数
1 分数的意义
把单位“1”平均分成若干份,表示这样的一份或者几份的数叫做分数。
在分数里,中间的横线叫做分数线;分数线下面的数,叫做分母,表示把单位“1”平均分成多少份;分数线下面的数叫做分子,表示有这样的多少份。
把单位“1”平均分成若干份,表示其中的一份的数,叫做分数单位。
2 分数的分类
真分数:分子比分母小的分数叫做真分数。真分数小于1。
假分数:分子比分母大或者分子和分母相等的分数,叫做假分数。假分数大于或等于1。
带分数:假分数可以写成整数与真分数合成的数,通常叫做带分数。
3 约分和通分
把一个分数化成同它相等但是分子、分母都比较小的分数 ,叫做约分。
分子分母是互质数的分数,叫做最简分数。
把异分母分数分别化成和原来分数相等的同分母分数,叫做通分。
(四)百分数
1 表示一个数是另一个数的百分之几的数 叫做百分数,也叫做百分率 或百分比。百分数通常用"%"来表示。百分号是表示百分数的符号。

二 方法
(一)数的读法和写法
1. 整数的读法:从高位到低位,一级一级地读。读亿级、万级时,先按照个级的读法去读,再在后面加一个“亿”或“万”字。每一级末尾的0都不读出来,其它数位连续有几个0都只读一个零。
2. 整数的写法:从高位到低位,一级一级地写,哪一个数位上一个单位也没有,就在那个数位上写0。
3. 小数的读法:读小数的时候,整数部分按照整数的读法读,小数点读作“点”,小数部分从左向右顺次读出每一位数位上的数字。
4. 小数的写法:写小数的时候,整数部分按照整数的写法来写,小数点写在个位右下角,小数部分顺次写出每一个数位上的数字。
5. 分数的读法:读分数时,先读分母再读“分之”然后读分子,分子和分母按照整数的读法来读。
6. 分数的写法:先写分数线,再写分母,最后写分子,按照整数的写法来写。
7. 百分数的读法:读百分数时,先读百分之,再读百分号前面的数,读数时按照整数的读法来读。
8. 百分数的写法:百分数通常不写成分数形式,而在原来的分子后面加上百分号“%”来表示。
(二)数的改写
一个较大的多位数,为了读写方便,常常把它改写成用“万”或“亿”作单位的数。有时还可以根据需要,省略这个数某一位后面的数,写成近似数。
1. 准确数:在实际生活中,为了计数的简便,可以把一个较大的数改写成以万或亿为单位的数。改写后的数是原数的准确数。 例如把 1254300000 改写成以万做单位的数是 125430 万;改写成 以亿做单位 的数 12.543 亿。
2. 近似数:根据实际需要,我们还可以把一个较大的数,省略某一位后面的尾数,用一个近似数来表示。 例如: 1302490015 省略亿后面的尾数是 13 亿。
3. 四舍五入法:要省略的尾数的最高位上的数是4 或者比4小,就把尾数去掉;如果尾数的最高位上的数是5或者比5大,就把尾数舍去,并向它的前一位进1。例如:省略 345900 万后面的尾数约是 35 万。省略 4725097420 亿后面的尾数约是 47 亿。
4. 大小比较
1. 比较整数大小:比较整数的大小,位数多的那个数就大,如果位数相同,就看最高位,最高位上的数大,那个数就大;最高位上的数相同,就看下一位,哪一位上的数大那个数就大。
2. 比较小数的大小:先看它们的整数部分,,整数部分大的那个数就大;整数部分相同的,十分位上的数大的那个数就大;十分位上的数也相同的,百分位上的数大的那个数就大……
3. 比较分数的大小:分母相同的分数,分子大的分数比较大;分子相同的数,分母小的分数大。分数的分母和分子都不相同的,先通分,再比较两个数的大小。
(三)数的互化
1. 小数化成分数:原来有几位小数,就在1的后面写几个零作分母,把原来的小数去掉小数点作分子,能约分的要约分。
2. 分数化成小数:用分母去除分子。能除尽的就化成有限小数,有的不能除尽,不能化成有限小数的,一般保留三位小数。
3. 一个最简分数,如果分母中除了2和5以外,不含有其他的质因数,这个分数就能化成有限小数;如果分母中含有2和5 以外的质因数,这个分数就不能化成有限小数。
4. 小数化成百分数:只要把小数点向右移动两位,同时在后面添上百分号。
5. 百分数化成小数:把百分数化成小数,只要把百分号去掉,同时把小数点向左移动两位。
6. 分数化成百分数:通常先把分数化成小数(除不尽时,通常保留三位小数),再把小数化成百分数。
7. 百分数化成小数:先把百分数改写成分数,能约分的要约成最简分数。
(四)数的整除
1. 把一个合数分解质因数,通常用短除法。先用能整除这个合数的质数去除,一直除到商是质数为止,再把除数和商写成连乘的形式。
2. 求几个数的最大公约数的方法是:先用这几个数的公约数连续去除,一直除到所得的商只有公约数1为止,然后把所有的除数连乘求积,这个积就是这几个数的的最大公约数 。
3. 求几个数的最小公倍数的方法是:先用这几个数(或其中的部分数)的公约数去除,一直除到互质(或两两互质)为止,然后把所有的除数和商连乘求积,这个积就是这几个数的最小公倍数。
4. 成为互质关系的两个数:1和任何自然数互质 ; 相邻的两个自然数互质; 当合数不是质数的倍数时,这个合数和这个质数互质; 两个合数的公约数只有1时,这两个合数互质。
(五) 约分和通分
约分的方法:用分子和分母的公约数(1除外)去除分子、分母;通常要除到得出最简分数为止。
通分的方法:先求出原来的几个分数分母的最小公倍数,然后把各分数化成用这个最小公倍数作分母的分数。

三 性质和规律
(一)商不变的规律
商不变的规律:在除法里,被除数和除数同时扩大或者同时缩小相同的倍,商不变。
(二)小数的性质
小数的性质:在小数的末尾添上零或者去掉零小数的大小不变。
(三)小数点位置的移动引起小数大小的变化
1. 小数点向右移动一位,原来的数就扩大10倍;小数点向右移动两位,原来的数就扩大100倍;小数点向右移动三位,原来的数就扩大1000倍……
2. 小数点向左移动一位,原来的数就缩小10倍;小数点向左移动两位,原来的数就缩小100倍;小数点向左移动三位,原来的数就缩小1000倍……
3. 小数点向左移或者向右移位数不够时,要用“0"补足位。

(四)分数的基本性质
分数的基本性质:分数的分子和分母都乘以或者除以相同的数(零除外),分数的大小不变。
(五)分数与除法的关系
1. 被除数÷除数= 被除数/除数
2. 因为零不能作除数,所以分数的分母不能为零。
3. 被除数 相当于分子,除数相当于分母。

四 运算的意义
(一)整数四则运算
1整数加法:
把两个数合并成一个数的运算叫做加法。
在加法里,相加的数叫做加数,加得的数叫做和。加数是部分数,和是总数。
加数+加数=和 一个加数=和-另一个加数
2整数减法:
已知两个加数的和与其中的一个加数,求另一个加数的运算叫做减法。
在减法里,已知的和叫做被减数,已知的加数叫做减数,未知的加数叫做差。被减数是总数,减数和差分别是部分数。
加法和减法互为逆运算。
3整数乘法:
求几个相同加数的和的简便运算叫做乘法。
在乘法里,相同的加数和相同加数的个数都叫做因数。相同加数的和叫做积。
在乘法里,0和任何数相乘都得0. 1和任何数相乘都的任何数。
一个因数× 一个因数 =积 一个因数=积÷另一个因数
4 整数除法:
已知两个因数的积与其中一个因数,求另一个因数的运算叫做除法。
在除法里,已知的积叫做被除数,已知的一个因数叫做除数,所求的因数叫做商。
乘法和除法互为逆运算。
在除法里,0不能做除数。因为0和任何数相乘都得0,所以任何一个数除以0,均得不到一个确定的商。
被除数÷除数=商 除数=被除数÷商 被除数=商×除数
(二)小数四则运算
1. 小数加法:
小数加法的意义与整数加法的意义相同。是把两个数合并成一个数的运算。
2. 小数减法:
小数减法的意义与整数减法的意义相同。已知两个加数的和与其中的一个加数,求另一个加数的运算.
3. 小数乘法:
小数乘整数的意义和整数乘法的意义相同,就是求几个相同加数和的简便运算;一个数乘纯小数的意义是求这个数的十分之几、百分之几、千分之几……是多少。
4. 小数除法:
小数除法的意义与整数除法的意义相同,就是已知两个因数的积与其中一个因数,求另一个因数的运算。
5. 乘方:
求几个相同因数的积的运算叫做乘方。例如 3 × 3 =32
(三)分数四则运算
1. 分数加法:
分数加法的意义与整数加法的意义相同。 是把两个数合并成一个数的运算。
2. 分数减法:
分数减法的意义与整数减法的意义相同。已知两个加数的和与其中的一个加数,求另一个加数的运算。
3. 分数乘法:
分数乘法的意义与整数乘法的意义相同,就是求几个相同加数和的简便运算。
4. 乘积是1的两个数叫做互为倒数。
5. 分数除法:分数除法的意义与整数除法的意义相同。就是已知两个因数的积与其中一个因数,求另一个因数的运算。

(四)运算定律
1. 加法交换律:
两个数相加,交换加数的位置,它们的和不变,即a+b=b+a 。
2. 加法结合律:
三个数相加,先把前两个数相加,再加上第三个数;或者先把后两个数相加,再和第一个数相加它们的和不变,即(a+b)+c=a+(b+c) 。
3. 乘法交换律:
两个数相乘,交换因数的位置它们的积不变,即a×b=b×a。
4. 乘法结合律:
三个数相乘,先把前两个数相乘,再乘以第三个数;或者先把后两个数相乘,再和第一个数相乘,它们的积不变,即(a×b)×c=a×(b×c) 。
5. 乘法分配律:
两个数的和与一个数相乘,可以把两个加数分别与这个数相乘再把两个积相加,即(a+b)×c=a×c+b×c 。
6. 减法的性质:
从一个数里连续减去几个数,可以从这个数里减去所有减数的和,差不变,即a-b-c=a-(b+c) 。
(五)运算法则
1. 整数加法计算法则:
相同数位对齐,从低位加起,哪一位上的数相加满十,就向前一位进一。
2. 整数减法计算法则:
相同数位对齐,从低位加起,哪一位上的数不够减,就从它的前一位退一作十,和本位上的数合并在一起,再减。
3. 整数乘法计算法则:
先用一个因数每一位上的数分别去乘另一个因数各个数位上的数,用因数哪一位上的数去乘,乘得的数的末尾就对齐哪一位,然后把各次乘得的数加起来。
4. 整数除法计算法则:
先从被除数的高位除起,除数是几位数,就看被除数的前几位; 如果不够除,就多看一位,除到被除数的哪一位,商就写在哪一位的上面。如果哪一位上不够商1,要补“0”占位。每次除得的余数要小于除数。
5. 小数乘法法则:
先按照整数乘法的计算法则算出积,再看因数中共有几位小数,就从积的右边起数出几位,点上小数点;如果位数不够,就用“0”补足。
6. 除数是整数的小数除法计算法则:
先按照整数除法的法则去除,商的小数点要和被除数的小数点对齐;如果除到被除数的末尾仍有余数,就在余数后面添“0”,再继续除。
7. 除数是小数的除法计算法则:
先移动除数的小数点,使它变成整数,除数的小数点也向右移动几位(位数不够的补“0”),然后按照除数是整数的除法法则进行计算。
8. 同分母分数加减法计算方法:
同分母分数相加减,只把分子相加减,分母不变。
9. 异分母分数加减法计算方法:
先通分,然后按照同分母分数加减法的的法则进行计算。
10. 带分数加减法的计算方法:
整数部分和分数部分分别相加减,再把所得的数合并起来。
11. 分数乘法的计算法则:
分数乘整数,用分数的分子和整数相乘的积作分子,分母不变;分数乘分数,用分子相乘的积作分子,分母相乘的积作分母。
12. 分数除法的计算法则:
甲数除以乙数(0除外),等于甲数乘乙数的倒数。
(一)什么是面积
面积,就是物体所占平面的大小。对立体物体的表面的多少的测量一般称表面积。
(一)什么是体积、容积
体积,就是物体所占空间的大小。
容积,箱子、油桶、仓库等所能容纳物体的体积,通常叫做它们的容积
四 时间 是指有起点和终点的一段时间
质量,就是表示表示物体有多重

三、解方程
解方程,求方程的解的过程叫做解方程。
四、列方程解应用题
1 列方程解应用题的意义
* 用方程式去解答应用题求得应用题的未知量的方法。
3列方程解应用题的方法
* 综合法:先把应用题中已知数(量)和所设未知数(量)列成有关的代数式,再找出它们之间的等量关系,进而列出方程。这是从部分到整体的一种 思维过程,其思考方向是从已知到未知。
* 分析法:先找出等量关系,再根据具体建立等量关系的需要,把应用题中已知数(量)和所设的未知数(量)列成有关的代数式进而列出方程。这是从整体到部分的一种思维过程,其思考方向是从未知到已知。
五 比和比例
1比的意义和性质
(1) 比的意义
两个数相除又叫做两个数的比。
“:”是比号,读作“比”。比号前面的数叫做比的前项,比号后面的数叫做比的后项。比的前项除以后项所得的商,叫做比值。
同除法比较,比的前项相当于被除数,后项相当于除数,比值相当于商。
比值通常用分数表示,也可以用小数表示,有时也可能是整数。
比的后项不能是零。
根据分数与除法的关系,可知比的前项相当于分子,后项相当于分母,比值相当于分数值。

北师大版小学数学一到六年级所有的定义: 第一章 数和数的运算
一 概念
(一)整数
1 整数的意义
自然数和0都是整数。
2 自然数
我们在数物体的时候,用来表示物体个数的1,2,3……叫做自然数。
一个物体也没有,用0表示。0也是自然数。
3计数单位
一(个)、十、百、千、万、十万、百万、千万、亿……都是计数单位。
每相邻两个计数单位之间的进率都是10。这样的计数法叫做十进制计数法。
4 数位
计数单位按照一定的顺序排列起来,它们所占的位置叫做数位。
5数的整除
整数a除以整数b(b ≠ 0),除得的商是整数而没有余数,我们就说a能被b整除,或者说b能整除a 。
如果数a能被数b(b ≠ 0)整除,a就叫做b的倍数,b就叫做a的约数(或a的因数)。倍数和约数是相互依存的。
因为35能被7整除,所以35是7的倍数,7是35的约数。
一个数的约数的个数是有限的,其中最小的约数是1,最大的 约数是它本身。例如:10的约数有1、2、5、10,其中最小的约数是1,最大的约数是10。
一个数的倍数的个数是无限的,其中最小的倍数是它本身。3的倍数有:3、6、9、12……其中最小的倍数是3 ,没有最大的倍数。
个位上是0、2、4、6、8的数,都能被2整除,例如:202、480、304,都能被2整除。。
个位上是0或5的数,都能被5整除,例如:5、30、405都能被5整除。。
一个数的各位上的数的和能被3整除,这个数就能被3整除,例如:12、108、204都能被3整除。
一个数各位数上的和能被9整除,这个数就能被9整除。
能被3整除的数不一定能被9整除,但是能被9整除的数一定能被3整除。
一个数的末两位数能被4(或25)整除,这个数就能被4(或25)整除。例如:16、404、1256都能被4整除,50、325、500、1675都能被25整除。
一个数的末三位数能被8(或125)整除,这个数就能被8(或125)整除。例如:1168、4600、5000、12344都能被8整除,1125、13375、5000都能被125整除。
能被2整除的数叫做偶数。
不能被2整除的数叫做奇数。
0也是偶数。自然数按能否被2 整除的特征可分为奇数和偶数。
一个数,如果只有1和它本身两个约数,这样的数叫做质数(或素数),100以内的质数有:2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53、59、61、67、71、73、79、83、89、97。
一个数,如果除了1和它本身还有别的约数,这样的数叫做合数,例如 4、6、8、9、12都是合数。
1不是质数也不是合数,自然数除了1外,不是质数就是合数。如果把自然数按其约数的个数的不同分类,可分为质数、合数和1。
每个合数都可以写成几个质数相乘的形式。其中每个质数都是这个合数的因数,叫做这个合数的质因数,例如15=3×5,3和5 叫做15的质因数。
把一个合数用质因数相乘的形式表示出来,叫做分解质因数。
例如把28分解质因数
几个数公有的约数,叫做这几个数的公约数。其中最大的一个,叫做这几个数的最大公约数,例如12的约数有1、2、3、4、6、12;18的约数有1、2、3、6、9、18。其中,1、2、3、6是12和1 8的公约数,6是它们的最大公约数。
公约数只有1的两个数,叫做互质数,成互质关系的两个数,有下列几种情况:
1和任何自然数互质。
相邻的两个自然数互质。
两个不同的质数互质。
当合数不是质数的倍数时,这个合数和这个质数互质。
两个合数的公约数只有1时,这两个合数互质,如果几个数中任意两个都互质,就说这几个数两两互质。
如果较小数是较大数的约数,那么较小数就是这两个数的最大公约数。
如果两个数是互质数,它们的最大公约数就是1。
几个数公有的倍数,叫做这几个数的公倍数,其中最小的一个,叫做这几个数的最小公倍数,如2的倍数有2、4、6 、8、10、12、14、16、18 ……
3的倍数有3、6、9、12、15、18 …… 其中6、12、18……是2、3的公倍数,6是它们的最小公倍数。。
如果较大数是较小数的倍数,那么较大数就是这两个数的最小公倍数。
如果两个数是互质数,那么这两个数的积就是它们的最小公倍数。
几个数的公约数的个数是有限的,而几个数的公倍数的个数是无限的。
(二)小数
1 小数的意义
把整数1平均分成10份、100份、1000份…… 得到的十分之几、百分之几、千分之几…… 可以用小数表示。
一位小数表示十分之几,两位小数表示百分之几,三位小数表示千分之几……
一个小数由整数部分、小数部分和小数点部分组成。数中的圆点叫做小数点,小数点左边的数叫做整数部分,小数点左边的数叫做整数部分,小数点右边的数叫做小数部分。
在小数里,每相邻两个计数单位之间的进率都是10。小数部分的最高分数单位“十分之一”和整数部分的最低单位“一”之间的进率也是10。
2小数的分类
纯小数:整数部分是零的小数,叫做纯小数。例如: 0.25 、 0.368 都是纯小数。
带小数:整数部分不是零的小数,叫做带小数。 例如: 3.25 、 5.26 都是带小数。
有限小数:小数部分的数位是有限的小数,叫做有限小数。 例如: 41.7 、 25.3 、 0.23 都是有限小数。
无限小数:小数部分的数位是无限的小数,叫做无限小数。 例如: 4.33 …… 3.1415926 ……
无限不循环小数:一个数的小数部分,数字排列无规律且位数无限,这样的小数叫做无限不循环小数。 例如:∏
循环小数:一个数的小数部分,有一个数字或者几个数字依次不断重复出现,这个数叫做循环小数。 例如: 3.555 …… 0.0333 …… 12.109109 ……
一个循环小数的小数部分,依次不断重复出现的数字叫做这个循环小数的循环节。 例如: 3.99 ……的循环节是“ 9 ” , 0.5454 ……的循环节是“ 54 ” 。
纯循环小数:循环节从小数部分第一位开始的,叫做纯循环小数。 例如: 3.111 …… 0.5656 ……
混循环小数:循环节不是从小数部分第一位开始的,叫做混循环小数。 3.1222 …… 0.03333 ……
写循环小数的时候,为了简便,小数的循环部分只需写出一个循环节,并在这个循环节的首、末位数字上各点一个圆点。如果循环 节只有 一个数字,就只在它的上面点一个点。例如: 3.777 …… 简写作 0.5302302 …… 简写作 。
(三)分数
1 分数的意义
把单位“1”平均分成若干份,表示这样的一份或者几份的数叫做分数。
在分数里,中间的横线叫做分数线;分数线下面的数,叫做分母,表示把单位“1”平均分成多少份;分数线下面的数叫做分子,表示有这样的多少份。
把单位“1”平均分成若干份,表示其中的一份的数,叫做分数单位。
2 分数的分类
真分数:分子比分母小的分数叫做真分数。真分数小于1。
假分数:分子比分母大或者分子和分母相等的分数,叫做假分数。假分数大于或等于1。
带分数:假分数可以写成整数与真分数合成的数,通常叫做带分数。
3 约分和通分
把一个分数化成同它相等但是分子、分母都比较小的分数 ,叫做约分。
分子分母是互质数的分数,叫做最简分数。
把异分母分数分别化成和原来分数相等的同分母分数,叫做通分。
(四)百分数
1 表示一个数是另一个数的百分之几的数 叫做百分数,也叫做百分率 或百分比。百分数通常用"%"来表示。百分号是表示百分数的符号。

二 方法
(一)数的读法和写法
1. 整数的读法:从高位到低位,一级一级地读。读亿级、万级时,先按照个级的读法去读,再在后面加一个“亿”或“万”字。每一级末尾的0都不读出来,其它数位连续有几个0都只读一个零。
2. 整数的写法:从高位到低位,一级一级地写,哪一个数位上一个单位也没有,就在那个数位上写0。
3. 小数的读法:读小数的时候,整数部分按照整数的读法读,小数点读作“点”,小数部分从左向右顺次读出每一位数位上的数字。
4. 小数的写法:写小数的时候,整数部分按照整数的写法来写,小数点写在个位右下角,小数部分顺次写出每一个数位上的数字。
5. 分数的读法:读分数时,先读分母再读“分之”然后读分子,分子和分母按照整数的读法来读。
6. 分数的写法:先写分数线,再写分母,最后写分子,按照整数的写法来写。
7. 百分数的读法:读百分数时,先读百分之,再读百分号前面的数,读数时按照整数的读法来读。
8. 百分数的写法:百分数通常不写成分数形式,而在原来的分子后面加上百分号“%”来表示。
(二)数的改写
一个较大的多位数,为了读写方便,常常把它改写成用“万”或“亿”作单位的数。有时还可以根据需要,省略这个数某一位后面的数,写成近似数。
1. 准确数:在实际生活中,为了计数的简便,可以把一个较大的数改写成以万或亿为单位的数。改写后的数是原数的准确数。 例如把 1254300000 改写成以万做单位的数是 125430 万;改写成 以亿做单位 的数 12.543 亿。
2. 近似数:根据实际需要,我们还可以把一个较大的数,省略某一位后面的尾数,用一个近似数来表示。 例如: 1302490015 省略亿后面的尾数是 13 亿。
3. 四舍五入法:要省略的尾数的最高位上的数是4 或者比4小,就把尾数去掉;如果尾数的最高位上的数是5或者比5大,就把尾数舍去,并向它的前一位进1。例如:省略 345900 万后面的尾数约是 35 万。省略 4725097420 亿后面的尾数约是 47 亿。
4. 大小比较
1. 比较整数大小:比较整数的大小,位数多的那个数就大,如果位数相同,就看最高位,最高位上的数大,那个数就大;最高位上的数相同,就看下一位,哪一位上的数大那个数就大。
2. 比较小数的大小:先看它们的整数部分,,整数部分大的那个数就大;整数部分相同的,十分位上的数大的那个数就大;十分位上的数也相同的,百分位上的数大的那个数就大……
3. 比较分数的大小:分母相同的分数,分子大的分数比较大;分子相同的数,分母小的分数大。分数的分母和分子都不相同的,先通分,再比较两个数的大小。
(三)数的互化
1. 小数化成分数:原来有几位小数,就在1的后面写几个零作分母,把原来的小数去掉小数点作分子,能约分的要约分。
2. 分数化成小数:用分母去除分子。能除尽的就化成有限小数,有的不能除尽,不能化成有限小数的,一般保留三位小数。
3. 一个最简分数,如果分母中除了2和5以外,不含有其他的质因数,这个分数就能化成有限小数;如果分母中含有2和5 以外的质因数,这个分数就不能化成有限小数。
4. 小数化成百分数:只要把小数点向右移动两位,同时在后面添上百分号。
5. 百分数化成小数:把百分数化成小数,只要把百分号去掉,同时把小数点向左移动两位。
6. 分数化成百分数:通常先把分数化成小数(除不尽时,通常保留三位小数),再把小数化成百分数。
7. 百分数化成小数:先把百分数改写成分数,能约分的要约成最简分数。
(四)数的整除
1. 把一个合数分解质因数,通常用短除法。先用能整除这个合数的质数去除,一直除到商是质数为止,再把除数和商写成连乘的形式。
2. 求几个数的最大公约数的方法是:先用这几个数的公约数连续去除,一直除到所得的商只有公约数1为止,然后把所有的除数连乘求积,这个积就是这几个数的的最大公约数 。
3. 求几个数的最小公倍数的方法是:先用这几个数(或其中的部分数)的公约数去除,一直除到互质(或两两互质)为止,然后把所有的除数和商连乘求积,这个积就是这几个数的最小公倍数。
4. 成为互质关系的两个数:1和任何自然数互质 ; 相邻的两个自然数互质; 当合数不是质数的倍数时,这个合数和这个质数互质; 两个合数的公约数只有1时,这两个合数互质。
(五) 约分和通分
约分的方法:用分子和分母的公约数(1除外)去除分子、分母;通常要除到得出最简分数为止。
通分的方法:先求出原来的几个分数分母的最小公倍数,然后把各分数化成用这个最小公倍数作分母的分数。

三 性质和规律
(一)商不变的规律
商不变的规律:在除法里,被除数和除数同时扩大或者同时缩小相同的倍,商不变。
(二)小数的性质
小数的性质:在小数的末尾添上零或者去掉零小数的大小不变。
(三)小数点位置的移动引起小数大小的变化
1. 小数点向右移动一位,原来的数就扩大10倍;小数点向右移动两位,原来的数就扩大100倍;小数点向右移动三位,原来的数就扩大1000倍……
2. 小数点向左移动一位,原来的数就缩小10倍;小数点向左移动两位,原来的数就缩小100倍;小数点向左移动三位,原来的数就缩小1000倍……
3. 小数点向左移或者向右移位数不够时,要用“0"补足位。

(四)分数的基本性质
分数的基本性质:分数的分子和分母都乘以或者除以相同的数(零除外),分数的大小不变。
(五)分数与除法的关系
1. 被除数÷除数= 被除数/除数
2. 因为零不能作除数,所以分数的分母不能为零。
3. 被除数 相当于分子,除数相当于分母。

四 运算的意义
(一)整数四则运算
1整数加法:
把两个数合并成一个数的运算叫做加法。
在加法里,相加的数叫做加数,加得的数叫做和。加数是部分数,和是总数。
加数+加数=和 一个加数=和-另一个加数
2整数减法:
已知两个加数的和与其中的一个加数,求另一个加数的运算叫做减法。
在减法里,已知的和叫做被减数,已知的加数叫做减数,未知的加数叫做差。被减数是总数,减数和差分别是部分数。
加法和减法互为逆运算。
3整数乘法:
求几个相同加数的和的简便运算叫做乘法。
在乘法里,相同的加数和相同加数的个数都叫做因数。相同加数的和叫做积。
在乘法里,0和任何数相乘都得0. 1和任何数相乘都的任何数。
一个因数× 一个因数 =积 一个因数=积÷另一个因数
4 整数除法:
已知两个因数的积与其中一个因数,求另一个因数的运算叫做除法。
在除法里,已知的积叫做被除数,已知的一个因数叫做除数,所求的因数叫做商。
乘法和除法互为逆运算。
在除法里,0不能做除数。因为0和任何数相乘都得0,所以任何一个数除以0,均得不到一个确定的商。
被除数÷除数=商 除数=被除数÷商 被除数=商×除数
(二)小数四则运算
1. 小数加法:
小数加法的意义与整数加法的意义相同。是把两个数合并成一个数的运算。
2. 小数减法:
小数减法的意义与整数减法的意义相同。已知两个加数的和与其中的一个加数,求另一个加数的运算.
3. 小数乘法:
小数乘整数的意义和整数乘法的意义相同,就是求几个相同加数和的简便运算;一个数乘纯小数的意义是求这个数的十分之几、百分之几、千分之几……是多少。
4. 小数除法:
小数除法的意义与整数除法的意义相同,就是已知两个因数的积与其中一个因数,求另一个因数的运算。
5. 乘方:
求几个相同因数的积的运算叫做乘方。例如 3 × 3 =32
(三)分数四则运算
1. 分数加法:
分数加法的意义与整数加法的意义相同。 是把两个数合并成一个数的运算。
2. 分数减法:
分数减法的意义与整数减法的意义相同。已知两个加数的和与其中的一个加数,求另一个加数的运算。
3. 分数乘法:
分数乘法的意义与整数乘法的意义相同,就是求几个相同加数和的简便运算。
4. 乘积是1的两个数叫做互为倒数。
5. 分数除法:
分数除法的意义与整数除法的意义相同。就是已知两个因数的积与其中一个因数,求另一个因数的运算。
(四)运算定律
1. 加法交换律:
两个数相加,交换加数的位置,它们的和不变,即a+b=b+a 。
2. 加法结合律:
三个数相加,先把前两个数相加,再加上第三个数;或者先把后两个数相加,再和第一个数相加它们的和不变,即(a+b)+c=a+(b+c) 。
3. 乘法交换律:
两个数相乘,交换因数的位置它们的积不变,即a×b=b×a。
4. 乘法结合律:
三个数相乘,先把前两个数相乘,再乘以第三个数;或者先把后两个数相乘,再和第一个数相乘,它们的积不变,即(a×b)×c=a×(b×c) 。
5. 乘法分配律:
两个数的和与一个数相乘,可以把两个加数分别与这个数相乘再把两个积相加,即(a+b)×c=a×c+b×c 。
6. 减法的性质:
从一个数里连续减去几个数,可以从这个数里减去所有减数的和,差不变,即a-b-c=a-(b+c) 。
(五)运算法则
1. 整数加法计算法则:
相同数位对齐,从低位加起,哪一位上的数相加满十,就向前一位进一。
2. 整数减法计算法则:
相同数位对齐,从低位加起,哪一位上的数不够减,就从它的前一位退一作十,和本位上的数合并在一起,再减。
3. 整数乘法计算法则:
先用一个因数每一位上的数分别去乘另一个因数各个数位上的数,用因数哪一位上的数去乘,乘得的数的末尾就对齐哪一位,然后把各次乘得的数加起来。
4. 整数除法计算法则:
先从被除数的高位除起,除数是几位数,就看被除数的前几位; 如果不够除,就多看一位,除到被除数的哪一位,商就写在哪一位的上面。如果哪一位上不够商1,要补“0”占位。每次除得的余数要小于除数。
5. 小数乘法法则:
先按照整数乘法的计算法则算出积,再看因数中共有几位小数,就从积的右边起数出几位,点上小数点;如果位数不够,就用“0”补足。
6. 除数是整数的小数除法计算法则:
先按照整数除法的法则去除,商的小数点要和被除数的小数点对齐;如果除到被除数的末尾仍有余数,就在余数后面添“0”,再继续除。
7. 除数是小数的除法计算法则:
先移动除数的小数点,使它变成整数,除数的小数点也向右移动几位(位数不够的补“0”),然后按照除数是整数的除法法则进行计算。
8. 同分母分数加减法计算方法:
同分母分数相加减,只把分子相加减,分母不变。
9. 异分母分数加减法计算方法:
先通分,然后按照同分母分数加减法的的法则进行计算。
10. 带分数加减法的计算方法:
整数部分和分数部分分别相加减,再把所得的数合并起来。
11. 分数乘法的计算法则:
分数乘整数,用分数的分子和整数相乘的积作分子,分母不变;分数乘分数,用分子相乘的积作分子,分母相乘的积作分母。
12. 分数除法的计算法则:
甲数除以乙数(0除外),等于甲数乘乙数的倒数。

小学六年级计算题 求式子和答案过程可以不要50道左右: 您好,应用题行吗,可以的话就有这些:
1
电影票原价每张若干元,现在每张降低3元出售,观众增加一半,收入增加五分之一,一张电影票原价多少元?
解:设一张电影票价x元
(x-3)×(1+1/2)=(1+1/5)x
(1+1/5)x这一步是什么意思,为什么这么做
(x-3){现在电影票的单价}×(1+1/2){假如原来观众总数为整体1,则现在的观众人数为(1+2/1)}
左边算式求出了总收入
(1+1/5)x{其实这个算式应该是:1x*(1+5/1) 把原观众人数看成整体1,则原来应收入1x元,而现在增加了原来的五分之一,就应该再*(1+5/1),减缩后得到(1+1/5x)}
如此计算后得到总收入,使方程左右相等
2
甲乙在银行存款共9600元,如果两人分别取出自己存款的40%,再从甲存款中提120元给乙。这时两人钱相等,求 乙的存款
答案
取40%后,存款有
9600×(1-40%)=5760(元)
这时,乙有:5760÷2+120=3000(元)
乙原来有:3000÷(1-40%)=5000(元)

3
由奶糖和巧克力糖混合成一堆糖,如果增加10颗奶糖后,巧克力糖占总数的60%。再增加30颗巧克力糖后,巧克力糖占总数的75%,那么原混合糖中有奶糖多少颗?巧克力糖多少颗?
答案
加10颗奶糖,巧克力占总数的60%,说明此时奶糖占40%,
巧克力是奶糖的60/40=1。5倍

再增加30颗巧克力,巧克力占75%,奶糖占25%,巧克力是奶糖的3倍
增加了3-1.5=1.5倍,说明30颗占1.5倍
奶糖=30/1.5=20颗

巧克力=1.5*20=30颗
奶糖=20-10=10颗

小明和小亮各有一些玻璃球,小明说:“你有球的个数比我少1/4!”小亮说:“你要是能给我你的1/6,我就比你多2个了。”小明原有玻璃球多少个?
答案
小明说:“你有球的个数比我少1/4!”,则想成小明的球的个数为4份,则小亮的球的个数为3份
4*1/6=2/3 (小明要给小亮2/3份玻璃球)
小明还剩:4-2/3=3又1/3(份)
小亮现有:3+2/3=3又2/3(份)
这多出来的1/3份对应的量为2,则一份里有:3*2=6(个)
小明原有4份玻璃球,又知每份玻璃球为6个,则小明原有玻璃球4*6=24(个)

搬运一个仓库的货物,甲需要10小时,乙需要12小时,丙需要15小时.有同样的仓库A和B,甲在A仓库、乙在B仓库同时开始搬运货物,丙开始帮助甲搬运,中途又转向帮助乙搬运.最后两个仓库货物同时搬完.问丙帮助甲、乙各多少时间?
  解:设搬运一个仓库的货物的工作量是1.现在相当于三人共同完成工作量2,所需时间是
  
  
  
  答:丙帮助甲搬运3小时,帮助乙搬运5小时
  解本题的关键,是先算出三人共同搬运两个仓库的时间.本题计算当然也可以整数化,设搬运一个仓库全部工作量为 60.甲每小时搬运 6,乙每小时搬运 5,丙每小时搬运4
  三人共同搬完,需要
  60 × 2÷(6+ 5+ 4)= 8(小时)
  甲需丙帮助搬运
  (60- 6× 8)÷ 4= 3(小时)
  乙需丙帮助搬运
  (60- 5× 8)÷4= 5(小时)
一件工作,若由甲单独做72天完成,现在甲做1天后,乙加入一起工作,合作2天后,丙也一起工作,三人再一起工作4天,完成全部工作的1/3,又过了8天,完成了全部工作的5/6,若余下的工作由丙单独完成,还需要几天?

答案
甲乙丙3人8天完成 :5/6-1/3=1/2
甲乙丙3人每天完成 :1/2÷8=1/16,
甲乙丙3人4天完成 :1/16×4=1/4
则甲做一天后乙做2天要做 :1/3-1/4=1/12
那么乙一天做 :[1/12-1/72×3]/2=1/48
则丙一天做 :1/16-1/72-1/48=1/36
则余下的由丙做要 :[1-5/6]÷1/36=6天
答:还需要6天

股票交易中,每买进或卖出一种股票都必须按成交易额的1%和2%分别交纳印花税和佣金(通常所说的手续费)。老王10月8日以股票10.65元的价格买进一种科技股票3000股,6月26日以每月13.86元的价格将这些股票全部卖出,老王卖出这种股票一共赚了多少钱?
答案
10.65*1%=0.1065(元) 10.65*2%=0.213(元)
10.1065+0.213=0.3195(元) 0.3195+10.65=10.9695(元)
13.86*1%=0.1386(元) 13.86*2%=0.2772(元)
0.1386+0.2772=0.4158 13.86+0.4158=14.2758(元)
14.2758-10.9695=3.3063(元)
答:老王卖出这种股票一共赚了3.3063元.

某书店老板去图书批发市场购买某种图书,第一次购书用100元,按该书定价2.8元出售,很快售完。第二次购书时,每本的批发价比第一次增多了0.5元,用去150元,所购数量比第一次多10本,当这批书售出4/5时出现滞销,便以定价的5折售完剩余图书。试问该老板第二次售书是赔钱还是赚钱,若赔,赔多少,若赚,赚多少
答案
(100+40)/2.8=50本 100/50=2 150/(2+0.5)=60本 60*80%=48本 48*2.8+2.8*50*12-150=1.2 盈利1.2元
一件工程原计划40人做,15天完成.如果要提前3天完成,需要增加多少人
解: 设需要增加x人
(40+x)(15-3)=40*15
x=10
所以需要增加10了
仓库有一批货物,运走的货物与剩下的货物的质量比为2:7.如果又运走64吨,那么剩下的货物只有仓库原有货物的五分之三。仓库原有货物多少吨?
解:第1次运走:2/(2+7)=2/9.
64/(1-2/9-3/5)=360吨。
答:原仓库有360吨货物。

育才小学原来体育达标人数与未达标人数比是3:5,后来又有60名同学达标,这时达标人数是未达标人数的9/11,育才小学共有学生多少人?
答案
原来达标人数占总人数的
3÷(3+5)=3/8
现在达标人数占总人数的
9/11÷(1+9/11)=9/20
育才小学共有学生
60÷(9/20-3/8)=800人

小王,小李,小张三人做数学练习题,小王做的题数的一半等于小李的1/3,等于小张的1/8,而且小张比小王多做了72道,小王,小张,小李各做多少道?
答案
设小王做了a道,小李做了b道,小张做了c道
由题意1/2a=1/3b=1/8c
c-a=72
解得a=24 b=36 c=96

甲乙二人共同完成242个机器零件。甲做一个零件要6分钟,乙做一个零件要5分钟。完成这批零件时,两人各做了多少个零件?
答案
设甲做了X个,则乙做了(242-X)个
6X=5(242-X)
X=110
242-110=132(个)
答:甲做了110个,乙做了132个
某工会男女会员的人数之比是3:2,分为甲乙丙三组,已知甲乙丙三组人数之比是10:8:7,甲组中男女比是3:1,乙组中男女比是5:3。求丙组男女人数之比
答案
设男会员是3N,则女会员是2N,总人是:5N
甲组有:5N*10/[10+8+7]=2N,其中:男:2N*3/4=3N/2,女:2N*1/4=N/2
乙级有:5N*8/25=8/5N,其中男:8/5N*5/8=N,女:8/5N*3/8=3/5N
丙级有:5N*7/25=7/5N
丙级中男有:3N-3N/2-N=N/2,女有:2N-N/2-3/5N=9/10N
那么丙组中男女之比是:N/2:9/10N=5:9
甲乙丙三个村合修一条水渠,修完后,甲乙丙村可灌溉的面积比是8:7:5原来三个村计划按可灌溉的面积比派出劳力,后来因为丙村抽不出劳力,经协商,丙村应抽出的劳力由甲乙两村分担,丙村付给甲乙两村工钱1350元,结果,甲村共派出60人,乙村共派出40人,问甲乙两村各应分得工钱多少元?
答案
根据甲乙丙村可灌溉的面积比算出总份数:8+7+5=20份
每份需要的人数:(60+40)÷20=5人
甲村需要的人数:8×5=40人,多出劳力人数:60-40=20人
乙村需要的人数:7×5=35人,多出劳力人数:40-35=5人
丙村需要的人数:5×5=25人 或 20+5=25人
每人应得的钱数:1350÷25=54元
甲村应得的工钱:54×20=1080元
乙村应得的工钱: 54×5=270元

p166
19题
李明的爸爸经营已个水果店,按开始的定价,每买出1千克水果,可获利0.2元。后来李明建议爸爸降价销售,结果降价后每天的销量增加了1倍,每天获利比原来增加了50%。问:每千克水果降价多少元?
答案
设以前卖出X 降价a 那么0.2X * (1+0.5)=(0.2-a) * 2x
则0.1X=2aX a=0.05

.哈利.波特参加数学竞赛,他一共得了68分。评分的标准是:每做对一道得20分,每做错一道倒扣6分。已知他做对题的数量是做错题的两倍,并且所有的题他都做了,请问这套试卷共有多少道题?
解:设哈利波特答对2X题,答错X题
20×2X-6X=68
40X-6X=68
34X=68
X=2
答对:2×2=4题
共有:4+2=6题
爸爸妈妈和奶奶乘飞机去旅行,三人所带行李的质量都超过了可免费携带行李的质量,要另付行李费,三人共付了4元,而三人行李共重150千克,如果这些行李让一个人带,那么除了免费部分,应另付行李费8元,求每人可免费携带行李的质量。
答案
设可免费携带的重量为x kg,则:
(150-3x)/4=(150-x)/8 //等式两边非免费部分单价相同;
解方程:x=30

一队少先队员乘船过河,如果每船坐15人,还剩9人,如果每船坐18人,刚好剩余1只船,求有多少只船?
答案
解法一:

设船数为X,则
(15X+9)/18=X-1
15X+9=18X-18
27=3X
X=9
答:有9只船。

解法二:

(15+9)÷(18-15)=8只船 --每船坐18人时坐了8只船
8+1=9只船

建筑工地有两堆沙子,一堆比2堆多85吨,两堆沙子各用去30吨后,一堆剩的是2堆的2倍,两堆沙子原来各有多少吨?
答案
设2堆为X吨,则一堆为X+85吨
X+85-30=2(X-30)
x=115(2堆)
x+85=115+85=200(1堆)

自然数1-100排列,用长方形框出二行六个数,六个数和为432,问这六个数最小的是几
答案
六个数分别是46 47 48 96 97 98

甲乙两地相距420千米,其中一段路面铺了柏油,另一段是泥土路.一辆汽车从甲地驶到乙地用了8小时,已知在柏油路上行驶的速度是每小时60千米,而在泥土路上的行驶速度是每小时40千米.泥土路长多少千米?

答案
两段路所用时间共8小时。

柏油路时间:(420-x)÷60

泥土路时间: x÷40

7-(x÷60)+(x÷40)=8
有x÷120=1
所以x=120

一少先队中队去野营,炊事员问多少人,中队长答: 一个人一个碗,两个人一只菜碗,三个人一只汤碗,放在你这儿有55只碗,你算算有多少人?
设有x个人
x+x/2+x/3=55
x=30

学校购买840本图书分给高、中、低三个年级段,高年级段分的是低年级段的2倍,中年级段分的是低年级段的3倍少120本。三个年级段各分得多少本图书?
设低年级段分得x本书,则高年级段分得2x本,中年级段分得(3x-120)本
x+2x+3x-120=840
6x-120=840
6x=840+120
6x=960
x=960/6
x=160
高年级段为:160*2=320( 本) 中年级段为:160*3-120=360(本)
答:低年级段分得图书160本,中年级段分得图书360本,高年级段分得图书320本.

学校田径组原来女生人数占1/3,后来又有6名女生参加进来,这样女生就占田径组总人数的4/9。现在田径组有女生多少人?
解 设 原来田径队男女生一共x人
1/3x+6= 4/9(x+6)
x=30
1/3x+6=30*1/3+6=16
女生16人

小华有连环画本数是小明6倍如果两人各再买2本那么小华所有本数是小明4倍两人原来各有连环画多少本?
解:设小华的有x本书
4(x+2)=6x+2
4x+8=6x+2
x=3
6x=18

小春一家四口人今年的年龄之和为147岁,爷爷比爸爸大38岁,妈妈比小春大27岁,爷爷的年龄是小春与妈妈年龄之和的2倍。小春一家四口人的年龄各是多少?
答案
1
设小春x岁,则妈妈x+27岁,爷爷(x+x+27)*2=4x+54岁,爸爸4x+54-38=4x+16岁
x+x+27+4x+54+4x+16=147,x=5
所以小春5岁,妈妈32岁,爷爷74岁,爸爸36岁。

2
爷爷+爸爸+(妈妈+小春)
=爷爷+(爷爷-38)+(爷爷/2)=147
爷爷=74岁
爸爸=36岁
妈妈+小春=小春+27+小春=74/2=37
小春=5岁
妈妈=5+27=32岁
小春一家四口人的年龄各是74,36,32,5岁

3
(147+38)÷(2×2+1)=37(岁)
36×2=74(岁) 爷爷的年龄
74-38=36(岁) 爸爸的年龄
(37+27)÷2=32(岁) 妈妈的年龄
32-27=5(岁) 小华的年龄
甲乙两校共有22人参加竞赛,甲校参加人数的5分之1比乙校参加人数的4分之1少1人,甲乙两校各多少人参赛?
解:设甲校有x人参加,则乙校有(22-x)人参加。
0.2 x=(22-x)×0.25-1
0.2x=5.5-0.25x-1
0.45x=4.5
x=10
22-10=12(人)
答: 甲校有10人参加,乙校有12人参加。

在浓度为40%的盐水中加入千克水,浓度变为30%,再加入多千克盐,浓度变为50%?
答案1

设原有盐水x千克,则有盐40%x千克,所以根据关系列出方程:
(40%x)/(x+1)=30% 得出x=3,再设须加入y千克盐,则有方程:

(1.2+y)/(4+y)=50%得出y=1.6

54比45多20%,算法,设所求为x,x(1+20%)=54 算出结果45

答案2
设原有溶液为x千克,加入y千克盐后,浓度变为50%
由题意,得溶质为40%x,则有
40%x/(x+5)=30%
解之得
x=15千克
则溶质有15*40%=6千克
由题意,得
(6+y)/(15+5+y)=50%
解之得
y=8千克
故再加入8千克盐,浓度变为50%

某人到商店买红蓝两种钢笔,红钢笔定价5元,蓝钢笔定价9元,由于购买量较多,商店给予优惠,红钢笔八五折,蓝钢笔八折,结果此人付的钱比原来节省的18%,已知他买了蓝钢笔30枝,那么。他买了几支红钢笔?
答案
红笔买了x支。
(5x+30×9)×(1-18%)=5x×0.85+30×9×0.8
x=36.

甲说:“我乙丙共有100元。”乙说:“如果甲的钱是现有的6倍,我的钱是现有的1/3,丙的钱不变,我们仍有钱100元。”丙说:“我的钱都没有30元。”三人原来各有多少钱?
答案
乙的话表明:甲钱5倍与乙钱2/3一样多
所以,乙钱是3*5=15的倍数,甲钱是偶数

丙钱不足30,所以,甲乙钱和多于70,
而乙多于甲的6倍,
所以,乙多于60

设乙=75,甲=75*2/3÷5=10,丙=100-10-75=15
设乙=90,甲=90*2/3÷5=12,90+12>100,不行

所以,三人原来:甲10元,乙75元,丙15元

某厂向银行申请甲乙两种贷款共30万,每年需支付利息4万元,甲种贷款年利率为12%,乙种贷款年利率为14%,该厂申请甲乙两种贷款金额各多少元?
答案
设:甲厂申请贷款金额x万元,则乙厂申请贷款金额(30-x)万元。
列式:x*0.12+(30-x)*0.14=4
化简:4.2-0.02x=4
0.02x=0.2
解得:x=10(万元)

某书店对顾客有一项优惠,凡购买同一种书100本以上,就按书价的90%收款。某学校到书店购买甲、乙两种书,其中乙种书的册数是甲种书册数的3/5只有甲种书得到了90%的优惠。其中买甲种书所付的钱数是买乙种书所付钱数的2倍。已知乙种书每本1.5元,那么甲种书每本定价多少元?
答案1
根据题意,
甲种超过了100本,乙种不到100 本
甲乙花的总钱数比为2:1
那么甲打折以前,和乙的总钱数比为:
(2÷0.9):1=20:9
甲乙册数比为5:3
甲乙单价比为(20÷5):(9÷3)=4:3
优惠前,甲种每本:1.5×4/3=2元

答案2
答案
设甲买了x本,则乙为3/5x,x>100
买乙共付了:3/5x*1.5=0.9x元
则甲共付了:0.9x*2=1.8x元
所以甲优惠后每本为:1.8x/x=1.8元
则优惠前:1.8/0.9=2元

两支成分不同的蜡烛,其中1支以均匀速度燃烧,2小时烧完,另一支可以燃烧3小时,傍晚6时半同时点燃蜡烛,到什么1支剩余部分正好是另一支剩余的2倍?
答案
两支蜡烛分别设为A蜡烛和B蜡烛,其中A蜡烛是那支烧得快点的
A蜡烛,两小时烧完,那么每小时燃烧1/2
B蜡烛,三小时烧完,那么每小时燃烧1/3
设过了x小时以后,B蜡烛剩余的部分是A的两倍
2(1—x/2)=1—x/3
解得x=1.5
由于是6点半开始的,所以到8点的时候刚刚好

学校组织春游,同学们下午1点从学校出发,走了一段平路,爬了一座山后按原路返回,下午七点回到学校。已知他们的步行速度平路4Km/小时,爬山3Km/小时,下山为6Km/小时,返回时间为2.5时。问:他们一共行了多少路
答案1
设走的平路是X公里 山路是Y公里
因为1点到七点共用时间6小时 返回为2.5小时 则去时用3.5小时
Y/3-Y/6=1小时
Y=6公里
去时共用3.5小时 则X/4+Y/3=3.5 X=6
所以总路程为2(6+6)=24km
答案2
解:春游共用时:7:00-1:00=6(小时)
上山用时:6-2.5=3.5(小时)
上山多用:3.5-2.5=1(小时)
山路:(6-3)×1÷(3÷6)=6(千米)
下山用时:6÷6=1(小时)
平路:(2.5-1)×4=6(千米)
单程走路:6+6=12(千米)
共走路:12×2=24(千米)
答:他们共走24千米。
参考资料:http://zhidao.baidu.com/link?url=lY8SN3RXwrenA4OybGh9efQVYALq-vjCx9sSsDPa_gbuFbVm2DCuQcijhH033oR75IeqdApoHHA_TLtjbUFLwa

六分之一除以三分之二乘以二等于多少四分之三除以八分之一乘以三分之一等于多: 1/6÷2/3×2=1/6×3/2×2=1/2
3/4÷1/8×1/3=3/4×1/3×8=2

求一份2011年汕头市龙湖区小学六年级毕业考试卷: 数学

一、填空。(18分)
1、一个数亿位上是最大的一位数、千万位上是6,万位上是最小的合数,千位上是最小的质数,其余数位上是0,这个数是写作( ),把它四舍五入到亿位记作( )亿。
2、把 3/4:1.8化成最简整数比是( ),比值是( )。
3、2/5 小时=( )分 8.06立方米=( )升
4、一堆化肥有6吨,按1∶3∶4分给甲、乙、丙三个生产队,甲队分得这堆化肥的(——),乙队分得( )吨。
5、甲乙两地相距35千米,画在一幅地图上的长度是7厘米,这幅地图的比例尺是( )。
6、24和54的最小公倍数是( ),最大公约数是( )。
7、六年级同学开展植树活动,成活80棵,5棵没有成活。成活率是( )。
8、一根绳子的长度等于它本身长度的 3/5加上2/5 米,这绳子长( )米。
9、正方体棱长的总和是48厘米,它的表面积是( )平方厘米,体积是( )立方厘米。
10、一件工作,甲独做2天可完成这件工作的1/3 。照这样计算,剩下的工作还需( )天完成。
11、一个圆柱体,如果把它的高截短3厘米,表面积就减少94.2平方厘米。它的底面半径是( )厘米,体积减少了( )立方厘米。
二、判断。(对的打“√”,错的打“×”)(4分)
1、平行四边形的对称抽有两条。……………………………………………( )
2、如果x×2/3 =y×3/4 ,那么x:y= 2/3: 3/4。…………………………………( )
3、甲数能被乙数整除,乙数一定是甲乙两数的最大公约数。………………( )
4、工作时间一定,制造每个零件的时间和零件个数成正比例。……………( )
三、选择。(把正确答案的序号填在括号里)(3分)
1、3.496保留两位小数约是( )。
①3.49 ②4.00 ③3.50
2、打一份稿件,甲用5分钟,乙用8分钟,甲乙两人工作效率的最简比是( )。 ①5:8 ②8:5 ③1/5 : 1/8
3、下列分数中不能化成有限小数的是( )。
①7/10 ② 5/16 ③ 3/12 ④ 9/14
四、计算。(10+9+15+6=40分)
1、直接写出得数。
5.4+8= 9-2/3 = 9÷27/29 = 1/9×18=
3.75+1/4 = 8/3÷4= 9.625-5/8 = 8/5×1.5=
(1-1.2÷ 4/3)÷ 1/5=
2、解方程。
① 3/8-4x= 1/8 ② 32:x=0.7: 7/8 ③ 1/3x+5/6 x=1.4

3、用递等式计算。
① 308×16-14874÷37 ②(10/3 +3/4 -21/8 )× 6/5 ③ 3.5÷5/8 × 8/15

④ 0.8×2.7+7.3÷ 5/4 ⑤ 9.8÷[28×(1-1/7 )÷6/5 ]
4、列式计算。
① 一个数的 1/3加上2.8,等于12.8,求这个数。

② 80的12%加上1.25除1/3 的商,和是多少?

五、下面是红旗小学六年级男、女生人数的统计图。(1+2+2=5分)

1、已知六(1)班的人数是49人,请完成上面统计图。
2、男生总人数比女生少( )%。
3、六年级三个班平均每个班( )人。
六、应用题。(5×6=30分)
1、一列货车和一列客车同时从相距504千米的两地相对开出,4.5小时相遇。客车每小时行64千米,货车每小时行多少千米?

2、某洗衣机厂五月份计划生产洗衣机504台,实际上半月完成了5/9 ,下半月完成了2/3 ,这个月实际生产洗衣机多少台?

3、一项工程,甲单独做 8天完成,乙单独做12天完成。现在甲乙合做3天后,剩下的由甲独做,还需几天完成?

4、果园里的桃树比杏树多40棵,杏树的棵数是桃树的80%,桃树有多少棵?

5、一个圆锥形沙堆,底面积是3.6平方米,高1.2米。把这堆沙装在长2米、宽l.5米的沙坑里,可以装多高?

6、某校参加数学竞赛的男生与女生的人数比是6:5,后来又增加了5名女生,这时女生人数是男生人数的 8/9。原来参加数学竞赛的女生有多少人?

语文
一、积累、运用(本题共3小题,共34分)
1、选择正确答案的序号填写在( )里。(本题共5小题,每小题2分,共10分)
(1)下列各组词语中,带点字的读音有错误的一组是( )。
①处理(ch ) 一缕(l ) 要挟(xi ) 闪烁(shu )
②勉强(qi ng) 胆怯(qi ) 僻静(b ) 简朴(p )
③标杆(g n) 峻工(j n) 飞翔(xi ng) 担当(d n)
(2)下列个组词语中,有错别字的一组是( )。
①骏马 虚弱 纯熟 悲惨 连绵不断
②惩罚 耻辱 书籍 军阀 兴国安帮
③逊色 阻挠 忧虑 剧本 应接不暇
(3)下列句子中的六个“和”,按意思可分为两组,正确的分法是( )。
A B C D E F
a和b两数的和的平方和a和b两数的平方和的和。
①ABC/DEF ②ACD/BEF ③ABD/CEF ④ADE/BCF
(4)选择与“宁为玉碎,不为瓦全”一句的句子类型完全相同的一句是( )。
①邱少云即使牺牲自己,也不暴露潜伏的目标。
②与其说它是城市,还不如说它是渔村更合适。
③既然天上没什么好,你就不用回去了。
(5)“这是……电影院”一句中的“电影院”的修饰词语,排列正确的一项是()。
A一座 B 现代化的 C 北京市 D 唯一的 E 新型的
①CADBE ②AEBCD ③CDABE ④BDAEC
2、按要求写词语。(本题共5小题,写10个词语,每个词语1分,共10分)
(1)写出含有“绿色”的词语。 --------------- -----------------
(2)请根据《赤壁之战〉一文的某些情节,概括出一个歇后语。
---------------------------------------------------------------------------------------------------------------------
(3)写出带有动物名称的成语。-------------------- ----------------- --------------------
(4)写出含有夸张意思的成语。-------------------------- -------------------------------------
(5)根据词的感情色彩不同写一对成语,如:兴高采烈——垂头丧气。
-------------------------------------------------------------------------------
3、按要求写句|、写话。(本题共5小题,第(1)(3)(5)题各2分,第(2)(4)题各4分,共14分)
(1)某书店要在店内醒目的地方挂一条幅,条幅上要写一句格言,请你选一个,并说明理由。
------------------------------------------------------------------------------------------------------------------------------ --------------------------------------------------------------------------------------------------------------------------------
(2)从下面几个事物中,选两个用古人的诗句来赞美它们。
A庐山 B小草 C春雨 D梅花 C柳树
①-----------------------------------------------------------------------------------------------------------------------
②------------------------------------------------------------------------------------------------------------------------
(3)在《鸟的天堂》中,作者描写榕树的茂盛时,从两个方面写的,这两句话是----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

八分之一减十五分之六加五分之三等于多少:

小学六年级上册语文数学英语的重点,难点,和考点.(因为段考要到了想复习一下): 数学的

一、填空。(18分)
1、一个数亿位上是最大的一位数、千万位上是6,万位上是最小的合数,千位上是最小的质数,其余数位上是0,这个数是写作( ),把它四舍五入到亿位记作( )亿。
2、把 3/4:1.8化成最简整数比是( ),比值是( )。
3、2/5 小时=( )分 8.06立方米=( )升
4、一堆化肥有6吨,按1∶3∶4分给甲、乙、丙三个生产队,甲队分得这堆化肥的(——),乙队分得( )吨。
5、甲乙两地相距35千米,画在一幅地图上的长度是7厘米,这幅地图的比例尺是( )。
6、24和54的最小公倍数是( ),最大公约数是( )。
7、六年级同学开展植树活动,成活80棵,5棵没有成活。成活率是( )。
8、一根绳子的长度等于它本身长度的 3/5加上2/5 米,这绳子长( )米。
9、正方体棱长的总和是48厘米,它的表面积是( )平方厘米,体积是( )立方厘米。
10、一件工作,甲独做2天可完成这件工作的1/3 。照这样计算,剩下的工作还需( )天完成。
11、一个圆柱体,如果把它的高截短3厘米,表面积就减少94.2平方厘米。它的底面半径是( )厘米,体积减少了( )立方厘米。
二、判断。(对的打“√”,错的打“×”)(4分)
1、平行四边形的对称抽有两条。……………………………………………( )
2、如果x×2/3 =y×3/4 ,那么x:y= 2/3: 3/4。…………………………………( )
3、甲数能被乙数整除,乙数一定是甲乙两数的最大公约数。………………( )
4、工作时间一定,制造每个零件的时间和零件个数成正比例。……………( )
三、选择。(把正确答案的序号填在括号里)(3分)
1、3.496保留两位小数约是( )。
①3.49 ②4.00 ③3.50
2、打一份稿件,甲用5分钟,乙用8分钟,甲乙两人工作效率的最简比是( )。 ①5:8 ②8:5 ③1/5 : 1/8
3、下列分数中不能化成有限小数的是( )。
①7/10 ② 5/16 ③ 3/12 ④ 9/14
四、计算。(10+9+15+6=40分)
1、直接写出得数。
5.4+8= 9-2/3 = 9÷27/29 = 1/9×18=
3.75+1/4 = 8/3÷4= 9.625-5/8 = 8/5×1.5=
(1-1.2÷ 4/3)÷ 1/5=
2、解方程。
① 3/8-4x= 1/8 ② 32:x=0.7: 7/8 ③ 1/3x+5/6 x=1.4

3、用递等式计算。
① 308×16-14874÷37 ②(10/3 +3/4 -21/8 )× 6/5 ③ 3.5÷5/8 × 8/15

④ 0.8×2.7+7.3÷ 5/4 ⑤ 9.8÷[28×(1-1/7 )÷6/5 ]
4、列式计算。
① 一个数的 1/3加上2.8,等于12.8,求这个数。

② 80的12%加上1.25除1/3 的商,和是多少?

五、下面是红旗小学六年级男、女生人数的统计图。(1+2+2=5分)

1、已知六(1)班的人数是49人,请完成上面统计图。
2、男生总人数比女生少( )%。
3、六年级三个班平均每个班( )人。
六、应用题。(5×6=30分)
1、一列货车和一列客车同时从相距504千米的两地相对开出,4.5小时相遇。客车每小时行64千米,货车每小时行多少千米?

2、某洗衣机厂五月份计划生产洗衣机504台,实际上半月完成了5/9 ,下半月完成了2/3 ,这个月实际生产洗衣机多少台?

3、一项工程,甲单独做 8天完成,乙单独做12天完成。现在甲乙合做3天后,剩下的由甲独做,还需几天完成?

4、果园里的桃树比杏树多40棵,杏树的棵数是桃树的80%,桃树有多少棵?

5、一个圆锥形沙堆,底面积是3.6平方米,高1.2米。把这堆沙装在长2米、宽l.5米的沙坑里,可以装多高?

6、某校参加数学竞赛的男生与女生的人数比是6:5,后来又增加了5名女生,这时女生人数是男生人数的 8/9。原来参加数学竞赛的女生有多少人?

  • 身上为什么绿

    为什么我用win7玩不起实况足球2011 说什么缺少文件 缺少什么d3dx9_30.dll: 去下载一个dxwebsetup安装上就好了!这个跟win7没什么关系!我也玩2011!希望对你有帮助!要不你留个qq号!我直接发到你邮箱! ...

    899条评论 3289人喜欢 6102次阅读 782人点赞
  • dnf双刀怎么堆

    mm7那个画质补丁,win7 64位可以用吗: 实话实说就是网上所谓的密匙超过99%均为无效,你尽可以去试试,但是最终一般还是硬解激活完事.Windows7的激活方式:1.软解激活:----也就是通过输入正版密匙的方式进行激活.第一枚“神Key”:TFP9Y-VC...

    806条评论 5782人喜欢 3140次阅读 774人点赞
  • myo在哪

    cf灵魂忍者是什么: 灵魂忍者之《忍者物语》:   他们曾经是一批训练有素的暗夜忍者,穿梭于新月之夜,来去如风,形影无踪,怎料在一次任务中不幸被生化病毒感染,成为了如今令人闻风丧胆的灵魂忍者。灵魂忍者全身漆黑,像是天生出没在生化战场的鬼魅...

    411条评论 4874人喜欢 4257次阅读 266人点赞
  • 0灯什么意思

    CF谁送我个号啊,,要写帐号和密码,要写大区,必须有生化角色,不要公开,有的加QQ:593746253: 谁会把买过角色的号送给你了? 给你个建议吧。你可以去玩体验服,每周一的晚上七点到九点你上线并得到经验,无论的多少经验,就可以送10000的CF 点,自己想买什么就买什么去吧 ,~! 希望能帮到你. ...

    732条评论 5096人喜欢 6295次阅读 318人点赞
  • mback专利到底是谁的

    我得这病(面瘫)都4个月了,每天都在电针灸。但还是没有完全康复。是不是不能康复了?望知道的医生说一下: 你好,康复时间和得病时间的长短肯定有关系,你一直电针灸不好,吃中药是可以康复的 ...

    519条评论 2111人喜欢 6269次阅读 774人点赞
  • dnf哪个宠物值钱

    我阳痿怎么办?: 有的阳痿和心理因素,环境变化的影响有关。一般是暂时性的,适度调节即可恢复。如果长期如此就要考虑疾病因素了。比如前列腺炎、前列腺增生、附睾炎、精索静脉曲张等常可导致阳痿。还有糖尿病,垂体机能不全,睾丸损伤或功能低下,或...

    425条评论 6576人喜欢 6369次阅读 769人点赞
  • 10088是什么号码

    CF里新生化角色“异形终结者”有卖的吗?(求高手解答): 攻击方式有了很大的改变 异形终结者是最新的超级生化幽灵,拥有超高的血量,你也玩CF啊 你没看见长得不一样么 我也玩 1098484882QQ 都是蛮大的 ...

    529条评论 4062人喜欢 6333次阅读 271人点赞